Messtechnik für ionisierende Strahlung

Stephan Scheidegger 2019

Messtechnik für ionisierende Strahlung

Inhalt

- Messaufgaben
- Ionisationskammern
- Proportionalzählrohre
- Geiger-Müller-Zählrohre
- Szintillationsdetektoren
- TLD
- Halbleiterdetektoren / Dioden
- DIS-Dosimeter

Messtechnik für ionisierende Strahlung

Welche Dosis?

- Dosisverteilung im Körper inhomogen
- für Optimierung jedoch eine Grösse (Zahl) wünschenswert
 → Effektive Dosis E

- Äquivalentdosis in 10 mm Tiefe
- Organe mit hohem Wichtungsfaktor (Schilddrüse!) liegen eher tiefer
- Schätzwert für effektive Dosis *E* bei externer Bestrahlung

$H_{P}(0.07) = H_{S}$

- Äquivalentdosis in 0.07 mm Tiefe
- Annahme: d
 ünste Dicke der Hornhaut
- Schätzwert für Hautdosis

- Äquivalentdosis in 3 mm Tiefe
- Operationeller Schätzwert für Augenlinse (Grenzwert!)

- Umgebungsäquivalent-Dosis
- Messung in ICRU-Kugel (76.2% O, 11.1% C, 10.1% H, 2.6% N)
- aufgeweitetes Strahlenfeld
- Messung auf dem zur Einstrahlrichtung parallelen Kugelradius in *d* mm Tiefe
- H*(10) operationelle Messgrösse für H_P

- Richtungsäquivalent-Dosis
- Messung in ICRU-Kugel (76.2% O, 11.1% C, 10.1% H, 2.6% N)
- aufgeweitetes Strahlenfeld
- Messung auf festgelegtem Kugelradius in *d* mm Tiefe
- H'(0.07) operationelle Messgrösse für H_s
- Mass f
 ür Dosimeter-Ansprechverm
 ögen

Prinzip

- Ionisation →
 Ladungstrennung
- Anlegen einer
 Spannung →
 Ladungstransport
 →
 Ionisationsstrom

Bsp. Stabdosimeter

Messung einer Dosis

Bestimmung der Dosis

$$X = \frac{\mathrm{d}Q}{\mathrm{d}m_{air}}$$

Exposure X

$$K_{col} = wX$$

Kerma

KERMA, Energiefluenz und Dosis

Bestimmung der Dosis φ_e Medium Medium Luft

Χ

KERMA, Energiefluenz und Dosis

Tiefe x

Messregimes

Kammerdurchmesser >> Sekundärelektronenreichweite

Kammerdurchmesser << Sekundärelektronenreichweite

Dosimetrie in der Strahlentherapie (RT)

Dosimetrie in der RT

Ziel: Verordnete Dosis so genau wie möglich applizieren (im Referenzpunkt und räumlich)

Messregimes

$$\frac{D_{\text{med}}}{D_{\text{gas}}} = \frac{\int_{0}^{E_{\text{max}}} dE \cdot (d\phi_{\text{e}} / dE)_{\text{med}} (dE / \rho ds)_{\text{med}}}{\int_{0}^{E_{\text{max}}} dE \cdot (d\phi_{\text{e}} / dE)_{\text{gas}} (dE / \rho ds)_{\text{gas}}}$$

Messregimes

$rac{D_{ m m}}{D_{ m ga}}$	$\frac{ed}{as} = \frac{\int_{0}^{Emax} \left(d\phi_e / dE \right)_{1}}{\int_{0}^{Emax} \left(d\phi_e / dE \right)_{2}}$	$\int_{\text{gas}} (dE / \rho ds)_{\text{med}} dE$	$=\overline{S}_{gas}^{med}$
	Strahlung	Material	
		Wasser	Kohlenstoff
		1 1 1 0	1 000
	100 κν _ρ	1.140	1.022
	¹³⁷ Cs	1.133	1.015
	⁶⁰ Co	1.129	1.009
	8 MeV **	1.117	0.993

Monitor Units (MU) vs Dosis

Monitor Units (MU) vs Dosis

$$MU = \frac{D}{k \cdot S_C \cdot S_P \dots \cdot \left(\frac{SCD}{SPD}\right)^2}$$

 S_C : Collimator scatter factor S_P : Phantom scatter factor k: cGy/MU

Proportionalzählrohr

Prinzip ähnlich wie Ionisationskammer, aber höhere Spannung

Proportionalzählrohr

Geiger-Müller-Zählrohr

Prinzip: Ladungslawine nach Ionisation durch Anlegen einer hohen Spannung

Geiger-Müller-Zählrohr

Vorteile:

- Kleine, handliche Form möglich
- empfindlich und billig

Nachteile

- Totzeit!
- Keine Energiediskriminierung (ausser mit Filter)

Geiger-Müller-Zählrohr

Szintillationsdetektoren

Prinzip:

- →Umwandlung von ionisierender Strahlung in Licht
- → Umwandlung von Licht in Elektronen und Verstärkung

Szintillationsdetektoren

Kristalldicke [mm]

Thermolumineszenz-Dosimeter

Prinzip:

- → Anregung von Elektronen / Anhebung ins Leitungsband
- \rightarrow Fixierung in sog. Traps
- → Bei Heizen rausschütteln der Elektronen und Freisetzung von Licht

Thermolumineszenz-Dosimeter

TL-Material	Dichte [g/cm ³]	Effektive Ordnungs- Zahl	Wellen- länge der max. TL- Emission [nm]
LiF:Mg,Ti	2.64	8.2	400
CaF ₂ :Mn	3.18	16.3	500
CaF ₂ :Dy	3.18	16.3	480, 580
CaSO ₄ :Dy	2.61	15.3	480, 570
CaSO ₄ :Tm	2.61	15.3	450
CaSO ₄ :Mn	2.61	15.3	500
BeO	3.01	7.1	330
AI_2O_3		10.2	400
Li ₂ B ₄ O ₇	2.3	7.4	600

Individuelle Dosisermittlung

Die Ermittlung der Dosis erfolgt durch:

- Personendosimeter f
 ür alle beruflich strahlenexponierten Personen
- Überschürzendosimeter bei möglicher hoher Belastung z.B. der Schilddrüse (interventionelle Radiologie)
- Fingerringdosimeter bei möglicher hoher Belastung der Hände (interventionelle Radiologie, NUK)
- Inkorporationsüberwachung beim Umgang mit Radionukliden in offener Form

Halbleiterdetektoren

Prinzip:

- → Interaktion mit Elektronen in der Verarmungsschicht
- → Anregung / Anhebung
- → Transport durch Potentialbarriere

Halbleiterdetektoren

Prinzip:

- → Interaktion mit Elektronen in der Verarmungsschicht
- → Anregung / Anhebung
- → Transport durch Potentialbarriere

Halbleiterdetektoren

Prinzip: Analogie zur Ionisationskammer, jedoch Si / Ge viel dichter → kleinvolumige Detektoren möglich

DIS-Dosimeter

Direct Ion Storage: basiert auf einer gasgefüllten Ionisationskammer, welche mit einer Halbleiter-Speicherzelle kombiniert ist (analog EEPROM)