MRI Theory

Jatta Berberat, PhD

Kantonsspital Aarau Neuroradiology

jatta.berberat@ksa.ch

Introduction

- Background and introduction
 - Magnetic Resonance Imaging
 - Relaxation mechanisms
- Imaging
 - gradients
 - FFT
- Basic sequences
 - parameters
 - SE
 - GE
 - IR
- Artifacts

Background and introduction

Magnetic Resonance Imaging

- Several advantages when compared to other imaging techniques:
 - Safe and non-invasive
 - Can be optimized to image specific tissues
 - Can be used quantitatively
- Rapid development of devices will allow:
 - higher and higher resolutions in future
 - more rapid aqcuisitions

- Nuclear Magnetic Resonance (NMR):
 - Based on the interaction between external magnetic field (B_0) and the nucleus of an atom
 - Only nucleons possessing *spin*-property react to the external magnetic field
 - depends on its amount of protons and neutrons:
 - Nuclei with an identical number of protons and neutrons = no spin
 - Nuclei with an odd number of protons or an odd number of neutrons or both have an overall spin
- The nucleus studied in MRI is usually ¹H,

water proton

- tissues consist mostly of water (60-80%) and fat
- ¹H is the most common isotope of hydrogen (about 99.985%)

- Rotating charge induces a magnetic field
- ¹H, hydrogen nucleus (proton) can be viewed as "small bar magnet"

•The magnetic dipolemoment = μ • μ has the direction of the B₀ field •The nucleus can have 2s + 1 energy stages: $E = -m_s \gamma \hbar B_0 = -m_s \gamma \hbar \omega_0$, where ms=-s, -s + 1, ..., s - 1, s and \hbar is Dirac's constant •¹H has two possible energy levels: •parallel (+1/2) or anti-parallel (-1/2) state with respect to the static field •The uneven distribution of the proton populations is given by the Bolzmann equation $N_{-1/2}/N_{+1/2} = e^{-\Delta E/KT} = e^{-\hbar \omega_0/kT}$

Relaxation

- T₂ relaxation, *spin-spin* or transverse relaxation (xy-plane)
 - decrease of transverse coherence of protons
 - energy is exchanged between spins
 - sensitive to water mobility
- combination of magnetic field inhomogeneities and spin spin transverse relaxation, with the result of
- rapid loss in transverse magnetization and MRI signal=Free Induction Decay (FID)

$$rac{1}{T_2^*} = rac{1}{T_2} + rac{1}{T_2'},$$

- T_2^* = total relaxation time T_2 = spin-spin relaxation T_2^* = component of T_2 Relaxation time induced
- by field inhomogeneities

Gradients

- Three physical gradients: x, y and z gradients
 embedded inside magnet
 - used to modify static magnetic field
- Gradients used in imaging
 - Slice selection gradient (G_{SS})
 - Read-out or frequency encoding gradient (G_{RO})
 - Phase encoding gradient (G_{PE})

•Slice selection gradient together with appropriate Rfpulse is used to select one slice

—The slice selection gradient G_{SS} determinates both the slice thickness and the slice position.

•Slice selection in MRI is the selection of spins in a plane through the object.

•Tissue located at position z_i will absorb rf energy broadcasted with a central frequency f_i . Each position will have a unique resonant frequency. • Once the slice is selected, (frequency) read out gradient G_{RO} and phase encoding gradients G_{PE} are used for spatial encoding

•Prior to application of G_{PE} , all protons will precess at the same frequency

•The precessing frequency of the protons is dependent of the y_i position

•Once G_{PE} is turned off, the proton will precess at it's originally frequency. Phase shift is marked with p_i .

• From this frequency and phase map, regular image can be calculated using *Fourier Transform*

• Each pixel in the image is related to the amount of spins and the magnetic environment at the

corresponding location in the sample

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Spin Echo (SE)

- spin echo refers to the refocusing of precessing nuclear spin magnetisation by a *180°* pulse of resonant radiofrequency.
 - 90° RF pulse -> excitation pulse: rotates the magnetization M_z into the xy-plane -> dephasing of the transverse magnetization (M_{xy}) starts
 - 180° pulse -> refocuses the spins to generate signal echoes

RF Slice Select Phase Encode Resdout Resdout	Spin Echo Sequence	
Stice Select Phase Encode	RF	
Phase Encode	Stice Select	
Resdout	Phase Encode	
	Readout	

Gradient Echo (GE)

- generated by using a pair of bipolar gradient pulses
- There is no refocusing 180° pulse
- data are sampled during a gradient echo:
 - negatively pulsed gradient dephases the spins -> they are rephased by an opposite gradient with opposite polarity to generate the echo
- The echo is produced by
 - reversing the direction of a magnetic field gradient or
 - by applying balanced pulses of magnetic field gradient before and after a refocusing RF pulse so as to cancel out the position dependent phase shifts that have accumulated due to the gradient.

- (rapid dephasing of transversal M)
- 3. Positive gradient is applied
- (reverses the magnetic field)
- 4. Spins begin to rephase forming a
- gradient echo

IR sequences

- better T1-contrast
- "Selective suppression" (FLAIR)
- longer measurement time
- allows to choose less slices (acquisition time should be in clinical routines as short as possible)

STIR

FLAIR

SE s	sequences
T ₂	T2: •long TR •long TE •fat bright •Liquid bright •Could be used for: • detection for abnormal fluids • meniscal tear in knee (synovial fluid will be seen brighter than the cartilage) etc.

SE sequences

- <u>T1:</u> • short TR
- short TE
- SHOLLE
- fat bright
- liquid dark
- used for:
 - predicting pathology with oedema or a lot of capillaries
 - fatty lesions
 - clear boundaries between different tissues etc.

Timing parameters

Spin echo-sequences	weighting	TR	TE
• TR = repetition time, desides the T ₁ weighting	T_1	short	short
• $TE = echo time, desides the T_2 weighting$	T ₂	long	long
	PD	long	short
Contrast values for IR: PD-w: TE: 10-20 ms, TR: 2000 ms, TI: 1800 ms T ₁ -w: TE: 10-20 ms, TR: 2000 ms, TI: 400-800 ms T ₂ -w: TE: 70 ms, TR: 2000 ms, TI: 400-800 ms	Flip angle a	TE	
Gradient echo-sequences		Short (<15ms)	Long (>30ms)
 α = flip angle, defines the angle of 	Small (<40°)	PD-w	T ₂ -w
exitation Longer TR requires bigger α	Large (>50°)	T ₁ -w	-
Bonger Fittequites 015501 u			

Timing parameters

Repetition time TR

- The amount of time that exists between successive pulse sequences applied to the same slice
- It is delineated by initiating the first RF pulse of the sequence then repeating the same RF pulse at a time t.
- Variations in the value of TR have an important effect on the control of image contrast
- TR is also a major factor in total scan time

• Echo time TE

 represents the time in milliseconds between the application of the 90° pulse and the peak of the echo signal in SE and IR pulse sequences

Timing parameters

- Flip angle α
 - is the angle to which the net magnetization is rotated or tipped relative to the main magnetic field direction via the application of a RF excitation pulse at the Larmor frequency
 - The radio frequency power (which is proportional to the square of the amplitude) of the pulse is proportional to α through which the spins are tilted under its influence
 - $\alpha = 0^{\circ}$ 90° are used in GE sequences
 - $-\alpha = 90^{\circ}$ and a series of 180° pulses: SE sequence
 - initial 180° pulse followed by a 90° and a 180° pulse: IR sequence
- Inversion time TI
 - The time period between the 180° inversion pulse and the 90° excitation pulse in an IR pulse sequence
 - The inversion time controls the signal of different tissues and with the change of this parameter also fat and water suppression is attainable.

Relaxation times in different tissues @ 1.5T

Tissue	T ₁ (ms)	T ₂ (ms)
Gray matter	1100	95
White matter	800	80
Spinal fluid	4500	2200
fat	250	60
cartilage	900	40
muscle	1000	40
blood	1400	300

Artifacts

Artifacts

Partial volume

- Image voxel is containing a mixture of tissue types
- Loss of contrast between two adjacent tissues
- Reason: insufficient resolution
- Help: thinner slices

Partial volume: dim brain tissue in the first MRI slice and blurs the edge of the brain in the last slice.

Artifacts

Cross-talk

- Appears as a reduced intensity on all but the first slice of a multi-slice set
- Reason: if the slice gap is too small the edges of the slice may overlap with ist neighbours
- Help: slice gap minimum 10%

Artifacts

Gradients

- False gradient strenght leads to geometrical distortion
- Help: calibrate gradients

Unhomogeneity from RF-field

• Field is not uniform over the whole image

Susceptibility/metal artefact

- Signal dropout, bright spots, spatial distortion
- Reason: Field inhomogeneity
- Help: reduce TE or increase resolution

Phase wrap-around artefact

- Produces the image of the tissue at the opposite edge of the scan
- in the phase-encoding direction (undersampling)
- Reason: anatomy continues outside the field of view (FOV)
- Help: use spatial saturation bands just outside the FOV to saturate
- the signal or larger FOV

Artifacts

Gibb's artefact/truncation

- Undersampling in the phase-encode direction
- Occures at high-contrast boundaries where intensity changes
- from dark to bright
- Reason: pixel size is too large to represent accurately the
- high-contrast boundary
- Help: phase-encoding matrix should not be less than half the
- frequency-encode matrix

Motion

- Field is not uniform over the whole image
- Reason: Movement of the imaged object

Ghost

- Displaced reduplications of image in phase-encoding direction
- Reason: motion, heart beat, respiration
- Help: triggering or change the band width

Artifacts

Zipper

- Bands through image center
- Reason: hardware or software problem
- Help: larger FOV, oversampling, integrety of the RF-shielding in the scan room
- <u>Magic angle</u>
- Increase of T₂ time, bright signal in tendons
- Reason: angle about 55° to the main magnetic field
- Help: Angle not ~55°

